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Relaxation properties of weakly coupled stochastic Ginzburg-Landau models under intense nois
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We investigate time relaxation properties of some correlation functions of stochastic Ginzburg-Landau
models with weak coupling and under intense noise. Using a Feynman-Kac representation and a ‘‘high-
temperature’’-type approach, we study the low-lying spectrum of the generator of the dynamics, which deter-
mines the relaxation properties. We give the one-particle mass and energy-momentum dispersion curve, and
also the two-particle bound-state mass, and show that both masses increase with the noise strength, in contrast
with the behavior in the small noise regime.
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I. INTRODUCTION

The relevance of noise effects on dynamical system
well known: random variables are present everywhere,
proving the description of mesoscopic and macroscopic
tems in physics~biology, chemistry, etc.! @1#, and generating
remarkable phenomena such as noise-induced phase tr
tion @2# and stochastic resonance@3#. The significance of
such effects makes the study of the basic dynamical pro
ties of extensively used stochastic models a subject of g
eral interest.

In this paper, we study relaxation properties of the Lan
vin dynamics of weakly coupled stochastic Ginzburg-Land
~GL! models in the intense noise regime, and we describe
approach inspired on high-temperature expansions. Th
time-dependent GL models are extensively used in phys
and frequently appear in the study of dynamical critical p
nomena: e.g., for a statistical-mechanical system they m
describe the time evolution of the order parameter. Here,
analyze in detail the time decay~relaxation to equilibrium! of
some correlation functions studying the low-lying spectru
of the generator of the Langevin dynamics: specifically,
describe the one-particle dispersion curve and show co
tions for the existence of a two-particle bound state in suc
regime. The present paper is related to investigations on
role played by changes in the noise strength in the b
dynamical properties of general stochastic models. Here
present results which contrast with the behavior in the sm
noise region presented in previous papers@4,5# ~contrast
which turns the intermediate noise regime a region of p
ticular interest!: now, under intense noise, the one-partic
and the two-particle bound-state masses increase with
noise strength~we also show that the conditions for the e
istence of a bound state also change with the noise regi!.

We emphasize that all these results are directly relate
experimentally observable effects: e.g., for a magnetic s
tem, the one-particle mass gives the time decay rate of
magnetization fluctuation, and the two-particle bound-st
mass gives the relaxation rate of the fluctuations in the s
ceptibility ~more details ahead!.
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The rest of the paper is organized as follows. In Sec.
we describe the model, the present and previous results
Sec. III, we analyze the correlation functions working on t
‘‘high-temperature’’ approach. Section IV is devoted to t
final comments.

II. MODEL AND RESULTS

We consider the time-dependent GL model, i.e., a sys
described by a scalar fieldw(t,xW )PR in a lattice spacexW
PZd, tP@0,̀ ) ~we maket discrete later!, with stochastic
dynamics given by the Langevin equation

]

]t
w~xW ,t !52

1

2
¹S~w~xW ,t !!1h~xW ,t !, ~1!

where¹S5dS/dw with

S~w!5 (
xWPZd

H 1

2
w~xW !„~2D1m2!w…~xW !1lP„w~xW !…J ,

~2!

D is the lattice Laplacian,l and m are positive parameter
(l!1!m), and P is an even polynomial, bounded from
below.h is a Gaussian white-noise random variable with t
expectations

E„h~xW ,t !…50, E„h~xW ,t !h~yW ,t8!…5gdxW ,yWd~ t2t8!,

g is positive~the noise strength!. We want to know the time
behavior of functionsf (w) with time evolution given by
f t(c)5E( f „w(t)…), wherew(0)5c is some initial condition
in Eq. ~1!. We will skip some technical details~presented,
e.g., in @6,7# and references therein!. Stochastic calculus
gives us

f t~c!5e2tH f ~c!,

H f 5H (
xWPZd

2
1

2
g

]2

]w~xW !2
1

1

2

]S

]w~xW !

]

]w~xW !
J f . ~3!

The generator of the dynamicsH is Hermitian, positive in
L2(dm), dm[e2S(w)/gdw/normalization. The ground stat
is f 51, with zero eigenvalue. We can writeH in terms of a
Schrödinger-type operator
©2002 The American Physical Society05-1
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5 (
xWPZd

H 2
1

2
g

]2

]w~xW !2
1

1

4 F 1

2g S ]S

]w~xW !
D 2

2
]2S

]w~xW !2G J ,

~4!

where U is the unitary operator U f (w)5Z21/2

3exp@2S/2g# f (w) from L2
„dm(w)… to L2(dw) (Z is the

normalization!. The Schro¨dinger representation suggests
us to establish a quantum-field-theory formulation for t
initial time evolution problem. Hence, a Feynman-Kac re
resentation follows@6#

„V,w~xW1!e2(t22t1)Hw~xW2!•••e2(tn2tn21)Hw~xWn!V…L2(dm)

5„UV,w~xW1!e2(t22t1)Lw~xW2!•••e2(tn2tn21)L

3w~xWn!UV…L2(dw)

5~V,we2(t22t1)H1 iPW •(xW22xW1)

3w•••e2(tn2tn21)H1 iPW •(xWn2xWn21)wV!L2(dm)

5E w~ t1 ,xW1!•••w~ tn ,xWn!dr, ~5!

whereV(w)51 is the ground state ofH, t1<t2<•••<tn ,
tPR, w(xW ) is the zero time field atxW , w5w(0W ), PW are mo-
mentum operators commuting withH ~the infinite volume
theory is translational invariant!, anddr5e2Wdn/*e2Wdn
with

W~w!5E
2`

`

dt (
xWPZd

H l

4g
P8„w~xW ,t !…@~2D1m2!w#~xW ,t !

1
l2

8g
P8„w~xW ,t !…22

l

4
P9„w~xW ,t !…J , ~6!

the notation8 means the derivative with respect tow, anddn
is a Gaussian measure with mean zero and covariance g
by

gC~xW ,t;yW ,t8![
g

~2p!d11E2`

`

dp0

3E
Td

ddp
eip0(t2t8)1 ipW •(xW2yW )

p0
21S (

i 51

d

~12cospi !1
m2

2 D 2 ,

~7!

Td is the torus (2p,p#d.
The Feynman-Kac formula and the spectral theorem

Hermitian operators give us the connection between
spectrum of the generator of the dynamics and the beha
of the correlation functions. For the truncated two-po
function~which gives the fluctuation in the magnetization f
05660
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a magnetic system! S2(x,y)[^w(x)w(y)&2^w(x)&^w(y)&
[*w(x)w(y)dr2*w(x)dr*w(y)dr, x[(x0 ,xW ), x0[tPR
~after the Feynman-Kac representation!, xWPZd, direct calcu-
lations from Eq.~5! lead to

S̃2~p!5E
0

`E
Td

2E

E21~p0!2

3~2p!dd~qW 2pW !d„V,wE~E,qW !wV…,

whereS̃2 is the Fourier transform ofS2 , E(E,pW ) is the spec-
tral projection associated with the operators (H,PW ), the inte-
gral overE runs from 0 to` and that overqW runs in Td.
Hence, a singularity inS̃2 for imaginary p05 ik0 gives a
point in the spectrum~one-particle sector! of the generator of
the dynamics~by the Paley-Wiener theorem, the singulari
in S̃2 is related to the decay ofS2). For the partially trun-
cated four-point function~describing fluctuations in the sus
ceptiblility for a magnetic system!

D~x1 ,x2 ;x3 ,x4![^w~x1!w~x2!w~x3!w~x4!&

2^w~x1!w~x2!&^w~x3!w~x4!&

we have the formula

~ f̃ ,D̃ f̃ !~k!5E dd11pdd11q f̄̃~pW !D̃~p,q,k! f̃ ~qW ! ~8!

5E
0

`E
Td

2E

~k0!21E2
~2p!3d12

3d~qW 2kW !d„u~ f !,E~E,qW !u~ f !…,

where u(hW )5w(0W )w(hW )V2„V,w(0W )w(hW )V…V; u( f )
5(xWPZdf (xW )u(2xW ); f : Zd→C is an arbitrary compact func
tion; p,q,k are the Fourier conjugate variables ofj5x2
2x1 , h5x42x3, andt5x32x2 ~due to translation invari-
ance, D depends only on difference variables!. We take
abovej05h050. As in the case of the two-point formula
the singularities ink0 above give information about the spe
trum of H on the even subspace of states with momentumkW .

In @4,5#, considering an approximation up to second ord
in l for the computation of the one-particle mass and fi
order in l for the Bethe-Salpeter~BS! kernel in the two-
particle bound-state mass, the low-lying spectrum is inve
gated for the case of noise intensity not very largeg
<m2). It is shown, in this region, the existence of a bou
state ford51 and 2 and a negative quartic term in the G
potential, and that its mass is more sensitive to change
the noise strength than the mass of the one-particle s
5-2
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decaying rapidly as we increase the noise. See Fig. 1.
suitable values of the parametersl, m, it is predicted the
existence of a mass crossover phenomenon: the two-pa
bound state may become smaller than the one-particle m
for some noise intensity. It is also shown, ford51 and in the
ladder approximation~leading order inl), the absence o
resonances and the existence of an antibound state clo
the two-particle threshold for a positive quartic term in t
GL potential. The existence of this antibound state is in
esting as an indication of the possibility of a bound state
to small changes in the system. We have to emphasize th
@7# we prove, forg51, that the spectral results obtained
the ladder approximation, up to minor changes, are m
tained in the complete treatment. In@4#, other phenomena ar
predicted, however, for large noise intensity, in a ran
which makes the question of the used approximation. He
in such a scenario, a natural and interesting question is
behavior of the system under intense noise.

FIG. 1. Behavior in the small noise regime: curveM ~one-
particle mass for the dashed line, and two-particle bound-state m
for the full line! versusg ~noise intensity!. The unit in the graphic
is m2/2, wherem2/2 is the one-particle ‘‘bare mass.’’ We take abo
d51, m510, l50.001, a4521, a650.1, and P(w)
5(a4/4)!:w4:1(a6/6)!:w6:.
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In the present paper, we turn to this large noise regim
g@m2. We keep the quantum-field~Feynman-Kac! descrip-
tion of the problem, but now as applied for a ‘‘magnet
system’’ at high temperature.

Here, considering an expansion in powers ofb51/g, we
obtain the one-particle energy-momentum dispersion cu
and establish conditions for the existence of a two-part
bound state. Taking the BS equation in the ladder appro
mation ~leading term in theb expansion!, we show that we
have a bound state for large noise if the field correlatio
satisfy the inequalitŷw4&.3^w2&2, where

^wn&5E
2`

`

wnexpH 2
bl2

8
@P8~w!#2

1
l

4
P9~w!J dw/~normalization!,

P is the polynomial in the GL potential,P8 its derivative,
etc. In particular, for smalll ~and largeg) and P(w)
5(a6/6)w61(a4/4)w4, we shall have a bound state fora4
positive or negative (a6 positive a priori!, and any space
dimensiond. The calculations for the one-particle mass gi
M.2 lnb, and for the two-particle bound-state mass th
give M* .2M1 ln(12z), where z5@^w4&23^w2&2#/@^w4&
2^w2&2#, which show that both increase with the noi
strength~as logg), in opposition to the behavior in the sma
noise regime.

III. HIGH-TEMPERATURE APPROACH

For the analysis in the intense noise regime we takt
PZ ~as said, we are only interested in the low-lying spe
trum!, and write the previous Feynman-Kac formula as, e
for the two-point function,

ss
S2~u,v !5

E w~u!w~v !expH 2bFlW̃~w!1
1

2
~w,C21w!G J dn~f!

E expH 2bFlW̃~w!1
1

2
~w,C21w!G J dn~f!

, ~9!
the
the
a

n-
whereb51/g,

W̃~w!5
1

4 (
x,y

P8~w~x!!~2D1m2!~x,y!w~y!, ~10!

~w,C21w!5(
x,y

w~x!C21~x,y!w~y!.

C is given by formula~7!, and the measuredn(w) is given
by products of the single spin distribution
dn~w!5 )
xPZd11

expH 2
bl2

8
@P8„w~x!…#2

1
l

4
P9„w~x!…J dw~x!/~normalization!. ~11!

The expression above is formal, but we may start with
system on a finite lattice and show later the existence of
thermodynamic limit. Now our problem is described as
continuous spin system inZd11, with nonlocal interactions
and a particular single spin distribution. The formulas co
5-3
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necting the correlation functions and the spectrum of
generator of the dynamics are slightly changed

S̃2~p!5E
0

`E
Td

sinhE

coshE2cosp0

3~2p!dd~qW 2pW !d„V,ŵE~E,qW !ŵV…

[E sinhE

coshE2cosp0
dh~E,pW !, ~12!

~ f̃ ,D̃ f̃ !~k!5E dd11pdd11q f̄̃~pW !D̃~p,q,k! f̃ ~qW !, ~13!

5E
0

`E
Td

sinhE

coshE2cosk0

3~2p!3d12d~qW 2kW !d„u~ f !,E~E,qW !u~ f !….

We turn to the analysis ofS̃2(p). To determine the singulari
ties we search for the zeroes ofG̃(p), which is the Fourier
transform ofG(x,y), the correlation inverse of the two-poin
function S2(x,y). For simplicity, we take the polynomial in
the GL potential asP(w)5(a6/6)w61(a4/4)w4, but similar
results follow for a more general expressionP(w)
5(n51

N (a2n/2n)w2n. The zeroes ofG̃„p05 iM (pW ),pW … give
the energy-momentum dispersion curve. Simple calculati
give us the result which we summarize below, for transp
ency.

One-particle dispersion curve: For the GL stochastic
model@consideringP(w)5(a6/6)w61(a4/4)w4, for simplic-
ity#, in the intense noise regimeg[b21@m2, we have an
isolated one-particle dispersion curve given by~up to first
order inb)

coshM ~pW !511
1

4b^w2&2
1

1

4^w2&2

3Flc1

4
1c21c3S (

j 51

d

~12cospj !1
m2

2 D G
1

1

2 S (
j 51

d

~12cospj !1
m2

2 D 2

, ~14!

where^•& is the expectation with respect to the single sp
distribution ~11!, and

c15$a6@^w8&22^w6&^w2&#

1a4@^w6&22^w4&^w2&#%~2d1m2!,

c25$^w4&22^w2&2%C21~0!,

c35a6^w
6&^w2&1a4^w

4&^w2&.
05660
e
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Hence, the one-particle massM is given by M (0W ).
2 lnb, which increases with the noise strength (g51/b). In
fact, now the mass is generated by the noise intensity, i.e.
the spin system picture, the gap in the spectrum is due to
high temperature. In the small noise regime, the one-part
mass is close tom2/2 @5#, and decays as we increase t
noise.

Now we analyze the partially truncated four-point fun
tion to determine the mass spectrum in the interval (M ,2M ).
Again, for clearness, we summarize the results below.

Two-particle bound state: For the considered GL stochas
tic model, in the intense noise regimeg@m2, if the polyno-
mial P in the GL potential is such that^w4&.3^w2&2, where
^•& is the expectation with respect to the single spin dis
bution ~11!, then there is an isolated two-particle bound st
with massM* 52M1 log(12z)1O(1/g), where M is the
one-particle mass andz5@^w4&23^w2&2#/@^w4&2^w2&2#.

Sketch of proof. We use the BS Eq.@6# which writesD as
D5D01DKD0, i.e.,

D~x1x2 ;x3x4!5D0~x1x2 ;x3x4!1 (
y1 ,y2 ,y3 ,y4

D~x1x2 ;y1y2!

3K~y1y2 ;y3y4!D0~y3y4 ;x3x4!,

where

D0~x1 ,x2 ;x3 ,x4![^w~x1!w~x3!&^w~x2!w~x4!&

1^w~x1!w~x4!&^w~x2!w~x3!&.

Again, using the relative coordinatesj,h, and t and the
Fourier transform, the BS equation becomes

D̃~p,q,k!5D̃0~p,q,k!1
1

~2p!2(d11)ETd11
dd11p8dd11q8

3D̃~p,p8,k!K̃~p8,q8,k!D̃0~q8,q,k!,

or using the notation (D̃(k) f )(p)[*Td11dd11q

3D̃(p,q,k) f (q),

D̃~k!5D̃0~k!1
1

~2p!2(d11)
D̃~k!K̃~k!D̃0~k!

5D̃0~k!@12~2p!22(d11)K̃~k!D̃0~k!#21.

We restrict the analysis to the mass spectrum, i.e.k

5(k0 ,kW50W ), and takef (p) depending only onpW . From the
definition of D0, we get

D̃0~p,q,k!5~2p!d11@S̃2~p!S̃2~q!d~k2p2q!

1S̃2~p!S̃2~k2p!d~q2p!#. ~15!

Hence, „D̃0(k0) f …(p)5(2p)d11S̃2(p)S̃2(k2p)@ f (pW )
1 f (2pW )#. For f (pW )5 f (2pW ), we obtain
5-4
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„ f̃ ,D̃~k0! f̃ …5E f̃ ~pW !H2~2p!d11E dp0S̃2~p!

3S̃2~k02p0 ,2pW !J S F12
1

~2p!2(d11)

3K̃~k0!D̃0~k0!G21

f̃ D ~pW !ddp. ~16!

As $ . . . %(k0 ,pW ) above is analytic inuIm k0u,2 M , the sin-
gularities in such a region come from where the inverse

12(2p)22(d11)K̃(k0)D̃0(k0) does not exist.

Now we follow replacingK̃ by the leading term in the
perturbation expansion~now in terms ofb), which is named,
as said, ladder approximation. We remark, as a commen
the reliability of such a procedure, that in@7–9# a rigorous
analysis shows that the spectral properties calculated in
ladder approximation are maintained.

Using K5D0
212D21, we obtain

K̃~p,q,k!uO(b50)5
^w4&23^w2&2

2^w2&2@^w4&2^w2&2#
5R, ~17!

i.e., constant~not depending onb), local in space and time
Writing @12A#21511A@12A#21 we get
05660
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„ f̃ ,D̃0~k0! f̃ …5E f̄̃ ~pW !D̃0~p,q,k0! f̃ ~qW ! dpdq

1
R8

12R8I D

S E f̄̃ ~pW !D̃0~p,q,k0!dpdqD
3S E D̃0~p8,q8,k0! f̃ ~q8W !dp8dqD , ~18!

wheredp[dd11p, etc.,R85R/(2p)2(d11) and

I D5E dq8dqD̃0~q8,q,k0!

52~2p!d11E dpS̃2~p!S̃2~k02p0 ,2pW !.

Thus, the singularity, and so the bound state, comes
R8I D51. We follow the calculations separating in the e
pression forS̃2(p) the dominant one-particle contribution~as
usual: we take the Lehmann spectral representation, see,
@6,7#!

S̃2~p!5~2p!dc̃2~pW !
sinhM ~pW !

coshM ~pW !2cosp0

1E
3M2«

` sinhE

coshE2cosp0
dh~E,pW !

where c̃2(pW )5]G̃(p05 i j,pW )/]juj5M (pW ) . We have, for the
~first! dominant term,c̃2(pW )5^f2&/(2p)d1O(b). Thus, for
the computation of~the leading part of! I D we useS̃2(p)
5^f2&sinhM(pW)/@coshM(pW)2cosp0#. Hence,
I D52~2p!d11E dp^f2&2
~eM (pW )2e2M (pW )!2

~eM (pW )1e2M (pW )2eip02e2 ip0!~eM (pW )1e2M (pW )2eik02 ip02e2 ik01 ip0!
.

in,
tri-

r
s

Writing ik052M2«, we get ~taking the leading termb
50) I D52(2p)2(d11)^f2&2/(12e2«). And for the eigen-
value equationR8I D51 we obtain

12e2«5
^f4&23^f2&2

^f4&2^f2&2
[z, ~19!

which leads, ifz.0, to the bound-state mass
M* 52 M1 ln~12z!, ~20!

~we have the same bound-state mass expression of@9#, there
calculated for a ferromagnetic system with continuous sp
nearest-neighbor interaction only and even single spin dis
bution!. j

Now we analyze z. For simplicity we keepP(w)
5(a6/6)w61(a4/4)w4, but similar analysis easily follows fo
general~even! polynomials. Let us investigate the condition
on a6 anda4 which give uŝ w4&.3^w2&2. Denotingw by x
or yPR, the correlation inequality may be written as
5-5
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E
2`

` E
2`

`

exp@2v~x!2v~y!#~x41y426x2y2!dxdy

E
2`

` E
2`

`

exp@2v~x!2v~y!#dxdy

.0,

where v(x)5$bl2/8@a6
2x1012a6a4x81a4

2x6#2l/4@5a6x4

13a4x2#%. Using polar coordinatesx5r cosu, y5r sinu,
the inequality becomes~the numerator!

E
0

`E
0

2p

e2v(r cosu)2v(r sin u)~cos4u1sin4u

26sin2cos2u!r 5drdu.0.

We estimate the contribution of the ‘‘small field’’ regio
~smallr; the contribution of larger is subdominant! introduc-
ing the change of variableseiu5z, and search for condition
which make positive theu ~i.e., z) integration, and so the
whole expression. Thez integration is over a unit circle on
the complex plane, with center in zero, and may be ca
lated by the theory of residues. Considering smallb andl,
the leading term after thez integration islp5a6r 4/32, and
r-

v.

05660
-

so positive ifa6.0. Namely, we shall have a bound state f
a4 positive or negative~in contrast with the results for the
small noise regime!.

IV. CONCLUDING REMARKS

We investigate some basic dynamical properties of
extensively used time-dependent GL model, analyzed w
submitted to intense noise. The results obtained here d
mine the time relaxation rate of some correlation functio
and so, they are directly related to experimentally observa
variables. We show a mass gap in the spectrum of the g
erator of the dynamics, and describe the one-particle and
two-particle bound-state masses, which shall increase w
the noise strength. The contrast with previous results fr
the small noise regime@4,5# ~there, the masses decay as w
increase the noise intensity! establishes the existence of a
interesting transient region~and poses the question of som
noise-induced phase transition!.
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