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Relaxation properties of weakly coupled stochastic Ginzburg-Landau models under intense noise
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We investigate time relaxation properties of some correlation functions of stochastic Ginzburg-Landau
models with weak coupling and under intense noise. Using a Feynman-Kac representation and a “high-
temperature”-type approach, we study the low-lying spectrum of the generator of the dynamics, which deter-
mines the relaxation properties. We give the one-particle mass and energy-momentum dispersion curve, and
also the two-particle bound-state mass, and show that both masses increase with the noise strength, in contrast
with the behavior in the small noise regime.
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I. INTRODUCTION The rest of the paper is organized as follows. In Sec. I,
we describe the model, the present and previous results. In
The relevance of noise effects on dynamical systems i§ec. lll, we analyze the correlation functions working on the
well known: random variables are present everywhere, im-high-temperature” approach. Section 1V is devoted to the
proving the description of mesoscopic and macroscopic sydinal comments.
tems in physicgbiology, chemistry, et¢.[1], and generating
remarkable phenomena such as noise-induced phase transi- Il. MODEL AND RESULTS
tion [2] and stochastic resonan¢8]. The significance of . . .
such effects makes the study of the basic dg/namical proper- We_ consider the t|mejdepenfjent C?L modgl, €. a system
ties of extensively used stochastic models a subject of gerflescribed by a scalar fielg(t,x) e R in a lattice space
eral interest. €79 te[0x) (we maket discrete later with stochastic
In this paper, we study relaxation properties of the Langedynamics given by the Langevin equation
vin dynamics of weakly coupled stochastic Ginzburg-Landau
(GL) models in the intense noise regime, and we describe an —0
approach inspired on high-temperature expansions. These dt
time-dependent GL models are extensively used in physics, ,
and frequently appear in the study of dynamical critical phe \WhereVS= S/ é¢ with
nomena: e.g., for a statistical-mechanical system they may 1
descrlbe_ the time evqlutlon of the order parameter. Here, we g(¢)= Z (—<p(x)((—A+m2)qo)(x)+>\7>(<p(x)) ,
analyze in detail the time dec#elaxation to equilibriumof e 12
some correlation functions studying the low-lying spectrum (2
of the generator of the Langevin dynamics: specifically, we, . . . .
describe the one-particle dispersion curve anF()j show condé is the lattice Laplaman),\ andm are pqsmve parameters
tions for the existence of a two-particle bound state in suchhg‘<1<m)' and P IS an even polynomlal, bognded _from
regime. The present paper is related to investigations on t elow. nisa Gaussian white-noise random variable with the
role played by changes in the noise strength in the basifxPectations
dynamical properties of general stochastic models. Here, we - - -, ,
present results which contrast with the behavior in the small  E(7(1)=0,  E(z(x,) n(y,t"))=yd; yo(t—t'),

noise region presented in previous papptss) (contrast is positive(the noise strengihWe want to know the time
which turns the intermediate noise regime a region of par—y P g

ticular interest now, under intense noise, the one-particlebeha\/Ior of functionsf(¢) with time evolution given by

and the two-particle bound-state masses increase with thfé(w):E(f(QD(t)))’ whereq(0)=y is some initial condition

noise strengthfwe also show that the conditions for the ex- n Eq._ (1). We will skip some techn_lcal detaﬂ(spresented,
istence of a bound state also change with the noise re)gimee.'g" in[6,7] and references therginStochastic calculus
We emphasize that all these results are directly related tg'ves us

experimentally observable effects: e.g., for a magnetic sys- f.(g) =€ ()

tem, the one-particle mass gives the time decay rate of the ’
magnetization fluctuation, and the two-particle bound-state 1 72 1 4S P
mass gives the relaxation rate of the fluctuations in the sus-  py¢—! > _—Z, — 4= = g
ceptibility (more details ahead wed 2700(x)% 2 9¢(X) do(X)

- 1 - -
(x,0)==5VS(e(x,1)+ 7(X.1), ()

()

The generator of the dynamid$ is Hermitian, positive in
*Permanent address: Depska-ICEx, UFMG, CP 702, 30.161- L2(du), du=e S®/*dg/normalization. The ground state
970Belo  Horizonte MG, Brazil; Email address: is f=1, with zero eigenvalue. We can wrik¢in terms of a
epereira@math.rutgers.edu; emmanuel@fisica.ufmg.br Schralinger-type operator
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L=UHU* a magnetic systemS,(x,y)=(e(X) ¢(y)) ~(e(x)){¢(¥))
L2 101/ s \? s =le()e(y)dp—Je(X)dpSe(y)dp, X=(X0,X), Xo=te R
= E __YL +o| = J | - J - , (after the Feynman-Kac representajiane Z9, direct calcu-
e |l 27002 427\ 00(x)]  de(x)? lations from Eq.(5) lead to
4
where U is the unitary operator Uf(¢)=2Z"1? 3 (p)= ” 2E
xexd—S2y]f(¢) from L?(du(¢)) to L2(de) (Z is the S2(p)= 0 JTEZ+ (py)2
normalization. The Schrdinger representation suggests to
us to establish a quantum-field-theory formulation for the X (2)98(q—p)d(Q, 0&(E,q) ),

initial time evolution problem. Hence, a Feynman-Kac rep-
resentation followg6] _ .
whereS, is the Fourier transform db,, £(E,p) is the spec-

(Q, o(xy)e L WHG(x,). . .ef(tn*tn_l)H‘p()Zn)Q)LZ(dM) tral projection associated with the operatdrt,_)l?), the inte-
gral overE runs from 0 to and that over runs in T¢.
Hence, a singularity ir~82 for imaginary po=iky gives a
point in the spectrunfone-particle sectgof the generator of
the dynamicgby the Paley-Wiener theorem, the singularity
in'S, is related to the decay d8,). For the partially trun-
cated four-point functioridescribing fluctuations in the sus-
ceptiblility for a magnetic system

=(UQ,p(x;)e 7l p(x,). - .e (i th-2)b

X @(Xn)UQ)2(44)
:(Q,@e—(tz—tl)H+iI5-(>22—>zl)

X @ e tatn-DHHP (002 o)) 50

D(X1,X2;X3,X4) =(@(X1) @(X2) @(X3) @(X4))

= f ¢(ty,%1)- - - ¢(tn,Xn)dp, (5)
—(@(X1) @(X2) (@ (X3) p(X4))
whereQ(¢)=1 is the ground state dfl, t;<t,<-.-<t,,

teR, go(ff) is the zero time field ax, <p=qo(5), P are mo- we have the formula
mentum operators commuting witd (the infinite volume
theory is translational invariaptanddp=e WVdv/fe Wdv
with ~ = o~ ~
A5Hk0= [ ¢ pa qTHB(akTE  (®)
A

4,7 COWOI(—A+me]xt)

® 2E
_ 3d+2
, (6) fo de(kO)z—l—Ez(ZW)

X 8(q—k)d(6(f),E(E,q) 6(f)),

wie)= | thd{

% xeZ
AN , N, -
+g77 (e(x,1)) —ZP' (p(x,1))

the notation’ means the derivative with respect¢oanddv
is a Gaussian measure with mean zero and covariance given
by where  0(7)=@(0)@(7)Q—(Q,0(0)p(7)Q)Q;  6(f)
=35 xf(X)0(—x); f: Z9—Cis an arbitrary compact func-
I vy * tion; p,q,k are the Fourier conjugate variables &&x,
7C(X't;y’t’)Ewadp0 —Xq, §=X4—Xg, and 7=X3— X, (due to translation invari-
T ance, D depends only on difference variabledVe take
lPo(t—t)+ip- (x~y) aboveé,=7,=0. As in the case of the two-point formula,
g 2 the singularities irk, above give information about the spec-

> (1—cosp))+ m trum of H on the even subspace of states with momerkum
i=1 2 In [4,5], considering an approximation up to second order
(7) in N for the computation of the one-particle mass and first
order in\ for the Bethe-Salpete(BS) kernel in the two-
T4 is the torus ¢ r, 7] particle bound-state mass, the low-lying spectrum is investi-
The Feynman-Kac formula and the spectral theorem fogated for the case of noise intensity not very large (
Hermitian operators give us the connection between thesm?). It is shown, in this region, the existence of a bound
spectrum of the generator of the dynamics and the behaviatate ford=1 and 2 and a negative quartic term in the GL
of the correlation functions. For the truncated two-pointpotential, and that its mass is more sensitive to changes in
function (which gives the fluctuation in the magnetization for the noise strength than the mass of the one-particle state,

xf dip
Td )
pPot
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In the present paper, we turn to this large noise regime:
y>m?. We keep the quantum-fieldeynman-Kag descrip-
tion of the problem, but now as applied for a “magnetic
system” at high temperature.

Here, considering an expansion in powersgBef 1/y, we
obtain the one-particle energy-momentum dispersion curve
. and establish conditions for the existence of a two-particle

bound state. Taking the BS equation in the ladder approxi-
mation (leading term in the3 expansiol we show that we
0 100 200 300 400 have a bound state for large noise if the field correlations
¥ satisfy the inequality ¢*)>3(¢?)?, where

FIG. 1. Behavior in the small noise regime: curi (one-
particle mass for the dashed line, and two-particle bound-state mass o 13)\2
for the full ling) versusy (noise intensity. The unit in the graphic (") = J (p”exp[ ——[P(e)]?
is m?/2, wherem?/2 is the one-particle “bare mass.” We take above — 8
d=1, m=10, A=0.001, a,=-1, az=0.1, and P(¢) N
=(aq/4): 0"+ (agl6)!: 9. +Z77’(go)]d(p/(normalization,

decaying rapidly as we increase the noise. See Fig. 1. For

suitable values of the parametexs m, it is predicted the 7P is the polynomial in the GL potential?’ its derivative,
existence of a mass crossover phenomenon: the two-particRiC. In particular, for small\ (and large y) and P(¢)
bound state may become smaller than the one-particle mass(2¢/6)¢°+ (as/4)¢*, we shall have a bound state faj,

for some noise intensity. It is also shown, b1 and inthe ~ positive or negative g positive a priori), and any space
ladder approximatiorﬂeading order in)\), the absence of dimensiond. The calculations for the one-particle mass give
resonances and the existence of an antibound state close M=—1Ing, and for the two-particle bound-state mass they
the two-particle threshold for a positive quartic term in thegive M*=2M +In(1-¢), where {=[{¢*) —3(¢??1/[{¢%)

GL potential. The existence of this antibound state is inter—{¢®?], which show that both increase with the noise
esting as an indication of the possibility of a bound state dustrength(as logy), in opposition to the behavior in the small
to small changes in the system. We have to emphasize that fipise regime.

[7] we prove, fory=1, that the spectral results obtained in

th_e Iad_der approximation, up to minor changes, are main- IIl. HIGH-TEMPERATURE APPROACH

tained in the complete treatment.[W, other phenomena are

predicted, however, for large noise intensity, in a range For the analysis in the intense noise regime we take
which makes the question of the used approximation. Hences 7Z (as said, we are only interested in the low-lying spec-
in such a scenario, a natural and interesting question is thieum), and write the previous Feynman-Kac formula as, e.g.,
behavior of the system under intense noise. for the two-point function,

N 1
f @(u)w(v)exp{ —B[RW(QDHE(@,C%D) ]dv(¢)

Sy(uv)= , (€)

~ 1
[ e ~ e+ 50,001 v

hereg=1ly, i
whereg=1/y dv(e)= [ ex —%[P,((P(X))]z

XEZd+l

~ 1
W(e)=7 XEy P (e())(=A+m)(xY)e(y), (10)

+%77’(<p(x)) de(x)/(normalization. (11

((p’C—l(P):E e()C L, y)(y). The expressio_n_ abovc_a is formal, but we may start with the
Xy system on a finite lattice and show later the existence of the
thermodynamic limit. Now our problem is described as a
C is given by formula(7), and the measurév(¢) is given  continuous spin system iA%"1, with nonlocal interactions
by products of the single spin distribution and a particular single spin distribution. The formulas con-
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necting the correlation functions and the spectrum of the Hence, the one-particle masdd is given by M(0)=

generator of the dynamics are slightly changed

éz(p):f:fT sinhE

dcoshE—cospg

X (2m)98(q—p)d(Q, ¢&(E,q) o)

_f sinhE dn(E.B
~ ] coshE—cosp, 7(E.p),

(, f)(k>=fdd“pdd“q?(ﬁ)ﬁ(p.q,kff(ci),

_J’wf sinhE
~ Jo JdcoshE — coskg

X (2m)%4T25(q—k)d(6(f),E(E,q) 6(1)).

—InB, which increases with the noise strength=1/8). In
fact, now the mass is generated by the noise intensity, i.e., for
the spin system picture, the gap in the spectrum is due to the
high temperature. In the small noise regime, the one-particle
mass is close tan?/2 [5], and decays as we increase the
noise.

Now we analyze the partially truncated four-point func-
tion to determine the mass spectrum in the interi&|ZM).

(12 Again, for clearness, we summarize the results below.

Two-particle bound statd~or the considered GL stochas-
tic model, in the intense noise regime>m?, if the polyno-

(13 mial P in the GL potential is such th&tp?)>3(¢?)2, where

(-) is the expectation with respect to the single spin distri-
bution (11), then there is an isolated two-particle bound state
with massM* =2M +log(1-¢)+0O(1/y), where M is the
one-particle mass ang=[(¢*) —3(@2)?1/[ (") —(9?)?].

Sketch of proofWe use the BS E{6] which writesD as
D=Dy+DKDy, i.e.,

We turn to the analysis &Z(p). To determine the singulari- D (X{X5;X3X4) =Dg(X1X2;X3X4) + 2 D(X1X2:;Y1Y2)
ties we search for the zeroes Bp), which is the Fourier Yi¥a¥aYa

transform ofl’(x,y), the correlation inverse of the two-point XK(Y1Y2:Y3Ya)Do(Y3Ys;XaXs),

function S,(x,y). For simplicity, we take the polynomial in

the GL potential asP(¢) = (ag/6)¢®+ (as/4)¢*, but similar ~ where

results follow for a more general expressioR(¢)

=21_1(a20/2n) ¢?". The zeroes off (po=iM(p),p) give Do(X1,X2:X3,%a) =((X1) @(X3))(@(X2) ¢(Xa))
the energy-momentum dispersion curve. Simple calculations

give us the result which we summarize below, for transpar- He(x)e(xa))(e(X2) e(X3)).
ency.

One-particle dispersion curveFor the GL stochastic
model[consideringP(¢) = (ag/6)@®+ (a,/4)¢?, for simplic-

Again, using the relative coordinates», and r and the
Fourier transform, the BS equation becomes

ity], in the intense noise regimg=B"1>m?, we have an

isolated one-particle dispersion curve given (oyp to first

order inB)
M (p)=1+ st
costM (p)=
4B(¢%)%  4%)?
d 2
AC m
X|—t+cptes| >, (1—cosp;)+ 5
4 = 2
d 2\ 2
1 m
5| & (-cosp)+ 5|

where(-) is the expectation with respect to the single spin

distribution (11), and

ci={as[(¢® —2(¢°)(¢?]
+ag[(e%) —2(e*)(¢?) 1} (2d+m?),

co={(¢") —2(e??C (0,

ca=ap(@°)(¢?) +ay o) (¢?).

(14

D(p.,a,k)=Do(p,q,k) + dd+1pddtig’

o)
(27T)2(d+1) Td+1
xD(p,p’,K)K(p',q",k)Do(a’,a,k),

or using the notation M(k)f)(p)=/te+1d%"q
XD(p,q,k)f(a),

- - 1 - - -
D(k):Do(k)+mD(k)K(k)Do(k)

=Do(k)[1—(2m) 2@+ DK (k) Dg(k)] 2.

We restrict the analysis to the mass spectrum, ilke.,

=(ko,k=0), and takef(p) depending only omp. From the
definition of Dy, we get

Do(p,a,k)=(2m) [ S,(p)S,(q) s(k—p—0q)
+S,(p)Sy(k—p)8(q—p)]. (15)

Hence, (Do(ko) )(p) = (27) 4" 1S,(p) S, (k—p)[ f(p)
+f(—p)]. For f(p)=f(—p), we obtain
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F,B(ko) )= J ?<6>{2<2w>d+1 J dpeSy(p) F Bo(kolF)= J F()Do(p.ake)T(d) dpdg
s 5 ! LR U?_(”)b( k)dd)
XSz(ko—Po,—p)] 1—m 1Rl P)Do(p.a,ko)dpdq
-1 N 1ot T ’
xR<ko>'f>o<ko)] ”f)(ﬁ)ddp. (16 XUDO("’ " ko)t (g ’dpdq)' (18

wheredp=d“*p, etc.,R' =R/(2m)2¢* Y and

As{...}(ko,p) above is analytic ifim ko|<2 M, the sin- IDZJ dg’'dqDo(q’,,ko)
gularities in such a region come from where the inverse of
1—(27) 2@ DK (ko) Do(ko) does not exist.

Now we follow replacingK by the leading term in the
perturbation expansiomow in terms ofB), which is named,
as said, ladder approximation. We remark, as a comment ofipys, the singularity, and so the bound state, comes for
the reliability of such a procedure, that [[i—9] a rigorous R’I,=1. We follow the calculations separating in the ex-
analysis shows that the spectral properties calculated in thgression forS,(p) the dominant one-particle contributi¢as

—2(2m)+ f P50/ S (Ko~ Po.— P)-

ladder approximation are maintained. usual: we take the Lehmann spectral representation, see, e.g.,
UsingK=D, '~ D, we obtain [6,7])
- R sinhM (p)
=(2m)% =
S(P)=(2m)ea(p) o E—
~ (e —3(¢%)? fx SinhE .
— . + e
K(p’q’k)b(ﬁ:o)_2<<P2>2[<<P4>—<<p2>2] =R {7 s coshE—cosp, 1 7(EP)

where C,(p)=dT' (Po=i£,p)/ 9€| (5 - We have, for the
(first) dominant termg,(p) =(¢%)/(27) 4+ O(B). Thus, for
the computation ofthe leading part of |5 we useS,(p)
= ( ¢?)sinhM(p)/[coshM(p) —cosp,]. Hence,

i.e., constantnot depending o), local in space and time.
Writing [1—A] '=1+A[1—A] ! we get

(eM(P) — g=M(p))2

ID=2<2w>d*1f dp(¢?)?

(eM(P) 4 g~ M(P) _ giPo_ g=iP0) (gM(P) 4 g=M(P) _ giko=1Po_ g —iko+iPo) '

Writing iko=2M —¢, we get (taking the leading ternB M*=2M+In(1-), (20)
=0) lp=2(2m)20@* Y $2)?/(1—e*). And for the eigen- ,
value equatiorR'l ;=1 we obtain (we have the same bound-state mass expressif#),ahere

calculated for a ferromagnetic system with continuous spin,
nearest-neighbor interaction only and even single spin distri-

4 . bution). o
1—e*’3=<¢ )—3(¢7) iy 19 Now we analyze¢. For simplicity we keepP(¢)
(%) —(¢?)2 ' = (ag/6)p°+ (asld)e”, t_)ut similar a_naly5|_s easily follows_, _for
general(even polynomials. Let us investigate the conditions
on ag anda, which give us{ ¢*)>3(¢?)2. Denotinge by x
which leads, if{>0, to the bound-state mass or y e R, the correlation inequality may be written as
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j i J " exi —v(x)— v (y)](x*+y4— 6xPy?)dxdy
i >0,

fic f:exq_v(x)_v(w]dxdy

where v (x)={B\%8[a2x %+ 2a5a,x®+ a2x®]— N /4] 5aex*
+3a,x?]}. Using polar coordinates=r cosé, y=r siné,
the inequality become@he numerator

© (2
f f We—u(r cos)—uv(r Sine)(CO§0+Sih40
0Jo

—6sirfcos 8)r>drd 6> 0.

We estimate the contribution of the “small field” region
(smallr; the contribution of large is subdominantintroduc-

ing the change of variable=s?=z, and search for conditions
which make positive theé (i.e., z) integration, and so the
whole expression. The integration is over a unit circle on

PHYSICAL REVIEW E65 056605

so positive ifag>0. Namely, we shall have a bound state for
a, positive or negativein contrast with the results for the
small noise regime

IV. CONCLUDING REMARKS

We investigate some basic dynamical properties of the
extensively used time-dependent GL model, analyzed when
submitted to intense noise. The results obtained here deter-
mine the time relaxation rate of some correlation functions,
and so, they are directly related to experimentally observable
variables. We show a mass gap in the spectrum of the gen-
erator of the dynamics, and describe the one-particle and the
two-particle bound-state masses, which shall increase with
the noise strength. The contrast with previous results from
the small noise regimg4,5] (there, the masses decay as we
increase the noise intensjitgstablishes the existence of an
interesting transient regiofand poses the question of some
noise-induced phase transitjon

the complex plane, with center in zero, and may be calcu- ACKNOWLEDGMENT

lated by the theory of residues. Considering sngalnd\,
the leading term after the integration is\ w5agr#/32, and
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